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Abstract—Multi-robot exploration of complex, unknown en-
vironments benefits from the collaboration and cooperation
offered by inter-robot communication. Accurate radio signal
strength prediction enables communication-aware exploration.
Models which ignore the effect of the environment on signal
propagation or rely on a priori maps suffer in unknown,
communication-restricted (e.g. subterranean) environments. In
this work, we present Propagation Environment Modeling and
Learning (PropEM-L), a framework which leverages real-time
sensor-derived 3D geometric representations of an environment
to extract information about line of sight between radios and
attenuating walls/obstacles in order to accurately predict received
signal strength (RSS). Our data-driven approach combines the
strengths of well-known models of signal propagation phenomena
(e.g. shadowing, reflection, diffraction) and machine learning, and
can adapt online to new environments. We demonstrate the per-
formance of PropEM-L on a six-robot team in a communication-
restricted environment with subway-like, mine-like, and cave-like
characteristics, constructed for the 2021 DARPA Subterranean
Challenge. Our findings indicate that PropEM-L can improve
signal strength prediction accuracy by up to 44% over a log-
distance path loss model.

I. INTRODUCTION

Motivated by lunar and planetary exploration [32, 2], we
consider the robotic exploration of large-scale and unknown
subterranean environments. The increased coverage and redun-
dancy offered by a team of robots can improve exploration
performance, relative to a single robot. Multi-robot teams
benefit from the collaboration and cooperation offered by
inter-robot communication [36]. However, harsh subterranean
environments typically have limited communication infrastruc-
ture, meaning robots cannot rely on wireless access points
for communication. In addition, communication signals see
significant degradation due to the scale of the environment,
winding passages without line of sight, and obstacles.

Modeling received signal strength (RSS) and how the
environment affects it is useful for communication-aware
exploration, during which robots autonomously maintain [31],
restore [8], and/or improve [35] connectivity. As shown in Fig.
1, we consider the setting of n robots exploring a subterranean
environment who must convey their findings to a stationary
base station at the entrance of the cave/tunnel, and can relay
data through stationary radios which are deployed during

Fig. 1. Left: Network of exploring robots, stationary relay radios, and
human supervisor base station. The network provides communication during
exploration, disaster mitigation, or search and rescue and is visualized over a
ground truth map of the 2021 DARPA Subterranean Challenge course. Right:
3D map of connectivity predicted by PropEM-L, learned from sparse point
cloud data, which can be used to enable communication-aware exploration.

exploration [14]. Predicting whether robot-to-base communi-
cation is available (through one or more hops) affects decisions
made by the robot, for example when and where to deploy
static radios. Additionally, understanding where connectivity
is available improves situational awareness for the remote
human supervisor and can assist in centralized planning and
task allocation [3, 21]. Because the signal strength depends on
distance and the environment, accurate prediction can also aid
in radio signal source-seeking [12], multi-robot localization
[5], and distributed task-planning [33]. However, the mobility
of the robots and lack of a priori maps presents new challenges
for accurate RSS prediction.

A. Related Work

The communication challenges associated with multi-robot
exploration have drawn increased attention [31, 26, 27, 34, 23].
These works are largely concerned with maintaining connec-
tivity, which requires models for estimating and/or predicting
connectivity. Existing work simplifies the inter-robot com-
munication model to a deterministic communication radius
[23], or predicts a probability of connectivity based solely on
distance [31]. These simple models break down if, for instance,
there is a metal wall within the communication radius which



blocks the signal. For this reason, Miyagusuku et al. seek to
capture the role of the environment through a learned model
of signal attenuation [18, 19]. Their data-driven approach is
well-suited for repeated operation in the same environment,
but for exploration of an unknown and dynamic environment
an online method is advantageous.

The authors of [12] demonstrate an online method for mod-
eling RSS during single-robot exploration. While they present
a model which captures the size and location of obstacles (for
example, a 1m thick wall 4m from the transmitter), they defer
the discussion of estimating these parameters. Quattrini Li et
al. propose a Gaussian Process (GP)-based method to build
a communication map from measurements taken by multiple
robots [24]. These works also focus on 2D operations, and give
little attention to the challenge of modeling the propagation
environment given partial maps in the form of 3D point clouds.

Previous work in the ecology community has considered
extracting relevant information from 3D point cloud data.
The authors of [6] and [16] use point clouds to determine
the location and thickness of trees in a dense forest, which
could theoretically feed into the model presented in [12].
Recently, the authors of [10] extend this idea to use learning-
based methods on 3D point cloud data to predict the affect of
tree canopies on signals propagating between static wireless
communication towers. Precise digital terrain models have
also been used to inform signal propagation models. [11]
extends a network simulator with awareness of the topography,
while [29] validates terrain-aware signal strength models with
experimental data. Recently, the authors of [17] demonstrate
the capability of neural networks to learn from known digital
terrain models to improve cellular network design. Our work
extends this method to be suitable for a dynamic network of
mobile, exploring robots.

B. Contributions and Highlights

To enable communication-aware multi-robot exploration in
unknown environments, we propose Propagation Environment
Modeling and Learning (PropEM-L), a framework for signal
strength prediction which learns the effect of the environment
on attenuation. The contributions and highlights of our work
are:

1) Propagation Environment Modeling: We propose
PropEM, which leverages sparse 3D geometric represen-
tations of the environment (e.g. LiDAR point clouds) to
extract features of the physical space which affect signal
propagation, including line-of-sight visibility, shadowing
due to obstacles, reflection, and diffraction.

2) Learning: We validate PropEM in conjunction with
conventional data-driven approaches to RSS prediction
which rely on linear regression. We then propose a
neural network-based approach, PropEM-L, which sig-
nificantly improves prediction accuracy relative to a log-
distance path loss model and can estimate RSS within a
few decibels.

3) Deployment: We evaluate the performance of PropEM-
L experimentally on a dynamic network of 13

Fig. 2. PropEM-L is a framework for predicting the signal strength between
two radios, given their positions, which learns from the geometry of their
environment. PropEM acts as an encoding layer from raw sensor data to
specific features which are relevant to propagation modeling.

autonomously-deployed static radios, one base station,
and six robots exploring an underground environment.
Via online learning, we demonstrate that PropEM-L can
adapt to challenging new environments and construct
signal strength maps.

II. PRELIMINARIES

Radio signal propagation is a multi-scale process where
received signal strength is a function of distance between
the transmitter and receiver, shadowing due to obstacles,
and multi-path phenomena that result from reflections and
refractions. Free space path loss is a first-order model which
quantifies the expected attenuation in an obstacle-free envi-
ronment. It is typically modeled as a logarithmic function of
distance d given by

PLdB = PL(d0)dB + η10 log10(d/d0). (1)

PL(d0)dB is the reference path loss in dB at a known distance
d0 and η is the path loss exponent which captures how quickly
the signal falls off and typically takes on different values in
different environments: in free space η = 2, in indoor areas
with line-of-sight 1.6 ≤ η ≤ 1.8, in urban outdoor areas 2.7 ≤
η ≤ 3.5, and in shadowed urban outdoor areas 3 ≤ η ≤ 5 [7].

Especially for long-ranges, the effect of shadowing is often
captured in this model by the addition of a log-normal random
variable with zero mean. Shadowing is complex to model as
it depends on the environment itself, and second-order models
(capturing path loss and shadowing) are usually determined
by fitting samples taken within a specific environment.

Third-order models capture additional information about re-
flected and diffracted signals. The two-ray model is commonly
used to capture the constructive or destructive interference
caused by signals which bounce off the ground, and depends
on the height of the antennas at the transmitter and receiver
(htx and hrx). The two-ray model [30] is given by

PL =
GtxGrxλ
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where Gtx, Grx are the transmitter and receiver antenna gains.
λ is the wavelength of the radio signal. � is the ground
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